
 

Subworkflows & Parallelization 
Splitting a large workflow into subworkflows (or reusable sub-processes) in n8n can 

improve maintainability, clarity, and scalability. Here are key signals that indicate it may 

be time to break up your workflow: 

 

 

1. Repeated Logic or Tasks 

● If you find yourself duplicating the same set of nodes or logic in multiple places 
within a workflow, or across several workflows, it's a strong sign to extract that 
logic into a subworkflow. 

● Example: Data validation, sending notifications, or formatting dates used in 
several flows. 

2. Workflow Complexity 

● When a workflow grows large and becomes difficult to follow, debugging and 
maintaining it becomes challenging. 

● If your workflow has many branches, nested conditions, or is visually cluttered, 
breaking it into logical subworkflow can make it easier to manage. 

3. Distinct Functional Steps 

● If your workflow consists of clearly distinct steps or phases (e.g., data collection, 
processing, and reporting), consider separating each phase into its own 
subworkflow. 

● This modular approach helps with clarity and future updates. 

4. Reusable Processes 

● If a process could be useful in other workflows, encapsulate it as a subworkflow. 
This makes it easier to reuse and update in one place. 

● Example: Authentication routines, error handling, or data enrichment steps. 

5. Team Collaboration 



 

● When multiple team members are working on different parts of a workflow, 
dividing it into subworkflows allows parallel development and reduces merge 
conflicts. 

6. Performance and Scalability 

● If parts of your workflow are resource-intensive or time-consuming, isolating them 
into subworkflows can help with monitoring, scaling, and error isolation. 

● Subworkflows can sometimes be triggered independently or retried without 
affecting the main workflow. 

7. Error Handling and Recovery 

● When certain steps are prone to failure and require specialized error handling or 
retries, placing them in a subworkflow allows for more granular control over error 
management. 

8. External Integrations 

● If your workflow interacts with external APIs or services in multiple places, 
centralizing those interactions in a subworkflow simplifies updates and 
troubleshooting. 

 



 

Summary Table: Signals for Subworkflow Creation in n8n 

Signal Example Use Case 

Repeated logic/tasks Data validation, notifications 

Workflow complexity Large, branched, hard-to-read flows 

Distinct functional steps Collection, processing, reporting 

Reusable processes Authentication, error handling 

Team collaboration Multiple developers, modular work 

Performance/scalability Resource-heavy or long-running steps 

Error handling/recovery Steps needing retries or special logic 

External integrations Multiple API calls or service hooks 

 

Breaking up workflows in n8n based on these signals leads to more maintainable, 

scalable, and robust automation solutions. 

 
 



 

Parallel vs. Sequential Execution of Tools in Workflows 

When deciding whether to run multiple tools (or tasks) in parallel or as a single 

sequential execution within your workflow, the choice can have significant 

implications—especially as the number of tools increases. 

Benefits of Running Tools in Parallel 

● Reduced Total Execution Time: 
Each tool runs independently, so the overall workflow completes as soon as the 
slowest tool finishes, rather than waiting for all tools to finish sequentially. This 
can dramatically speed up processing, especially when tools have similar 
runtimes. 

● Improved Scalability: 
As you scale up to dozens or hundreds of tools, parallel execution prevents 
bottlenecks. Running 100 tools sequentially means the workflow duration is the 
sum of all tool runtimes, which can become impractical. In parallel, the duration is 
closer to the longest single tool execution. 

● Fault Isolation: 
If one tool fails, it doesn't necessarily halt the entire process. You can handle 
errors individually, retry specific tools, or log failures without affecting the rest of 
the workflow. 

● Resource Utilization: 
Parallel execution makes better use of available system resources (CPU, 
memory), especially in cloud or distributed environments where resources can be 
scaled horizontally. 

Drawbacks and Considerations 

● Resource Limits: 
Running many tools in parallel can overwhelm system resources if not managed 
carefully. For 100 tools, you may hit limits on concurrent executions, memory, or 
API rate limits. 

● Complexity in Coordination: 
Managing results, errors, and dependencies between parallel tasks can add 
complexity to your workflow design. 

● Order of Execution: 
If tools depend on each other's outputs, parallel execution is not suitable unless 
dependencies are managed. 

What Happens with 100 Tools? 

● Sequential Execution: 



 

● Total time = sum of all tool runtimes. 
● If each tool takes 1 minute, 100 tools = 100 minutes. 
● Any failure can halt the entire process. 

● Parallel Execution: 
● Total time ≈ time of the slowest tool (plus overhead). 
● 100 tools at 1 minute each = ~1 minute total (if resources allow). 
● Failures can be isolated; successful tools still complete. 

Scenario Sequential Execution Parallel Execution 

Total Time Sum of all runtimes Longest single runtime 

Fault Tolerance Low (one failure stops all) High (failures are isolated) 

Resource Usage Lower, but less efficient Higher, but more efficient 

Scalability Poor with many tools Good, limited by resources 

Complexity Simpler More complex coordination 

 

Best Practices 

● For a small number of tools, either approach is manageable. 
● As the number of tools grows, parallel execution becomes essential for efficiency 

and scalability. 
● Monitor system resources and set concurrency limits to avoid overload. 
● Design workflows to handle errors and aggregate results from parallel tasks. 



 

Running tools in parallel is generally more efficient and scalable, especially as your 

workflow grows in size and complexity. However, it requires careful management of 

resources and error handling to maximize benefits. 

 

 

How n8n Handles Multiple Items in Perplexity or AI Agent Nodes 

When you pass multiple items (such as four research topics or data points) into a 

Perplexity node or an AI agent node in n8n, the processing behavior depends on n8n’s 

core execution model and your workflow design. 

Default Behavior: Sequential Per-Item Processing 

● Per-Item Execution: By default, n8n processes each input item individually and 
sequentially. If you pass four items into a Perplexity or AI agent node, the node 
will process each item one after another, not all at once 1 2. 

● Result: If each item takes a few seconds to process, the total time will be roughly 
the sum of all processing times. For example, four items at 10 seconds each 
would take about 40 seconds in total. 

Parallel Execution: Is It Possible? 

● Native Node Execution: n8n nodes in a workflow path do not run in parallel by 
default. Even if you have multiple items, the node will handle them one at a time 
3 1 2. 

● Subworkflow/Advanced Patterns: You can achieve parallelism by using advanced 
patterns: 

● Execute Workflow Node: Trigger subworkflows for each item and set them 
to run asynchronously (by disabling “wait for completion”). This allows 
each subworkflow (and thus each item) to run independently and in 
parallel, limited only by your server resources and configured concurrency 
4 5 6 7. 

● Webhook/HTTP Node: Some users trigger subworkflows via 
HTTP/Webhook nodes to force parallel execution, but this adds complexity 
and requires careful result aggregation 5 6. 

AI Agent and Perplexity Nodes 

https://www.aifire.co/p/master-ai-automation-fast-the-n8n-80-20-blueprint-guide
https://www.reddit.com/r/n8n/comments/1ip9efq/ai_agent_excessive_processing_time_within_workflow/
https://community.n8n.io/t/how-to-excute-multiple-nodes-in-parallel-not-sequential/23565
https://www.aifire.co/p/master-ai-automation-fast-the-n8n-80-20-blueprint-guide
https://www.reddit.com/r/n8n/comments/1ip9efq/ai_agent_excessive_processing_time_within_workflow/
https://www.linkedin.com/posts/simpsonwayne_unlocking-proper-parallel-execution-in-n8n-activity-7325179052837740545-Xo5N
https://community.n8n.io/t/can-n8n-sub-nodes-support-parallel-execution/19294
https://n8n.io/workflows/2536-pattern-for-parallel-sub-workflow-execution-followed-by-wait-for-all-loop/
https://community.n8n.io/t/can-n8n-sub-nodes-support-parallel-execution/19294
https://n8n.io/workflows/2536-pattern-for-parallel-sub-workflow-execution-followed-by-wait-for-all-loop/


 

● AI Agent Node: When you pass multiple items, the node processes them 
sequentially unless you explicitly design your workflow for parallel execution 
using subworkflows or similar techniques 8 2. 

● Perplexity Node: The same principle applies. Four items will be researched one 
after another unless you split them into separate parallel branches or 
subworkflows 1 9 10. 

Practical Example 

Scenario Default Behavior With Parallelization Pattern 

4 items into Perplexity node Sequential (1 by 1) Possible parallel (with subworkflows) 

4 items into AI agent node Sequential (1 by 1) Possible parallel (with subworkflows) 

100 items (default) All sequential Parallel only with advanced setup 

Key Takeaways 

● n8n does not process multiple items in parallel by default within a single node. 
● Parallel processing is possible using subworkflows or by triggering separate 

workflow executions, but this requires explicit workflow design and can increase 
complexity 4 6 11 7. 

● Resource Management: Running many items in parallel can strain your server or 
hit external API rate limits, so concurrency should be managed carefully 12 13. 

If you want true parallelism for tasks like AI research or analysis, consider restructuring 

your workflow to launch each item as its own subworkflow or execution. Otherwise, 

expect n8n to handle each item one after another. 
 

https://community.n8n.io/t/support-for-parallel-execution-in-ai-agent-workflows-on-n8n/119665
https://www.reddit.com/r/n8n/comments/1ip9efq/ai_agent_excessive_processing_time_within_workflow/
https://www.aifire.co/p/master-ai-automation-fast-the-n8n-80-20-blueprint-guide
https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-langchain.perplexity/
https://www.linkedin.com/pulse/unlocking-automation-potential-perplexity-ai-n8n-peter-sigurdson-ewzfe
https://www.linkedin.com/posts/simpsonwayne_unlocking-proper-parallel-execution-in-n8n-activity-7325179052837740545-Xo5N
https://n8n.io/workflows/2536-pattern-for-parallel-sub-workflow-execution-followed-by-wait-for-all-loop/
https://www.reddit.com/r/n8n/comments/1izacve/how_to_parallelize_item_processing_to_improve/
https://community.n8n.io/t/is-it-possible-to-parallel-ai-agents/72961
https://docs.n8n.io/hosting/scaling/concurrency-control/

	Subworkflows & Parallelization 
	1. Repeated Logic or Tasks 
	2. Workflow Complexity 
	3. Distinct Functional Steps 
	4. Reusable Processes 
	5. Team Collaboration 
	6. Performance and Scalability 
	7. Error Handling and Recovery 
	8. External Integrations 
	 
	Parallel vs. Sequential Execution of Tools in Workflows 
	Benefits of Running Tools in Parallel 
	Drawbacks and Considerations 
	What Happens with 100 Tools? 
	 
	Best Practices 
	 
	 
	How n8n Handles Multiple Items in Perplexity or AI Agent Nodes 
	Default Behavior: Sequential Per-Item Processing 
	Parallel Execution: Is It Possible? 
	AI Agent and Perplexity Nodes 
	Practical Example 
	Key Takeaways 


